3

ASUMAN G. AKSOY Department of Mathematics Claremont McKenna College Claremont, CA. 91711 U.S.A.

Abstract

This paper is a study of the n-widths defined by Kolmogorov. In section I we give definitions of n-widths of a set in a Banach space and n-widths of an operator acting between Banach spaces. Several important well known results about this concepts are also included in section I. In section II, we introduce a refined concept of an approximation scheme with respect to which a refined concept of n-widths can be defined. Theorems about generalized n-widths illustrate the fact that this is a genuine generalization. We finish by the question of finding concept of n-widths in the context of Orlicz modular spaces.

I. N-Widths of a Set

Let X be a normed linear space and X_n be its n-dimensional subspace of X, for each $x \in X$ the distance, $d(x; X_n)$ of X_n to x is defined by:

$$\mathtt{d}(\mathtt{x};\mathtt{X}_n) \; = \; \mathtt{Inf} \; \left\{ \parallel \; \mathtt{x} \; - \; \mathtt{y} \; \parallel \; : \; \mathtt{y} \in \mathtt{X}_n \; \right\}.$$

If there is a $y \in X_n$ for which $d(x;X_n) = \|x - y^*\|$ holds then y^* is the best approximation to x from X_n . More than 100 years ago Weierstrass proved that given a continuous function f(x) on [a,b] and E > 0, there exists a polynomial p(x) such that $\|f(x) - p(x)\| < E$. Which tells us that $d(f; P_n) --> 0$ as $n--> \infty$ for each n, where $P_n = \text{span}(1, x^1, \cdots, x^n)$.

Now let us suppose instead of a single element x, we are given a subset A of X, then how well n-dimensional subspace X_n

of X approximate the subset A? To answer this question one looks at the deviation of A from $X_{\rm D}$, namely:

$$d(A; X_n) = Sup \{ d(a, X_n) : a \in A \}$$

Thus, $d(A; X_n)$ measures the extent to which the "worst element" of A can be approximated from X_n . If we take this process one step further by allowing n-dimensional subspaces X_n vary within X_n , then the question is how well one can approximate A by n-dimensional subspaces of X_n ? The answer to this question was first given by Kolmogorov.

<u>Definition:</u> Let X be a normed linear space and A a subset of X, the <u>n-th width</u> or <u>n-diameter</u> (or Kolmogorov n-th diameter) of A in X is:

$$d_n(A;X) = Inf\{d(A;X_n): X_n \text{ is } n-dimensional subspace of }X\}$$

Thus
$$d_n(A;X)=Inf$$
 sup $inf || a-x ||$.
 $X_n a \in A x \in X_n$

We often drop X and write d_n (A).

A subspace X_n of X of dimension at most n, for which $d_n(A;X) = d(A;X_n)$ is called the optimal subspace for $d_n(A;X)$.

Besides defining the concept of n-widths, Kolmogorov also computed $d_n\left(A;X\right)$ for some particular cases. For example, he showed that [13]

$$d_0(A ; L_2) = \infty$$
, and $d_{2n-1}(A ; L_2) = d_{2n}(A ; L_2) = n^{-k}$

where $L_2 = L_2$ [0;2 π] square integrable functions on [0;2 π], and (k)

$$A = \{ f : f \in W_2 / || f^{(k)}|| \le 1 \}$$

(k)

and W2 is the space of 2π periodic, real valued, (k-1) times differentiable functions whose (k-1) st derivative is absolutely continuous and whose kth derivative is in L2.

In general it is impossible to obtain $d_n(A;X)$ for all A and X although there is a considerable effort devoted to calculate $d_n(A;X)$ for specific choices of A and X [See 13]. A usual method of calculation is to find an upper bound by

calculating $d_n(A;X_n)$ for a "reasonable" choice of X_n , and then to show that the quantity obtained is infact the lower bound as well. It is also important to determine asymptotic behavior of $d_n(A;X)$ as $n-->\infty$. In many cases very simple n-dimensional subspaces may approximate A in an asymptotically optimal manner.

N-widths of integral operators and n- widths of Soboloev spaces can be found in [13]. Let D be a fixed $n \times n$ matrix and the set A is

$$A = \{ Dx : \|x\|_{L^{p}} \le 1 \} \subset L^{n}_{q} \quad \text{where p, } q \in [1, \infty]$$

Very little are known about $d_n(A; l_q^n)$ unless p=q=2 or $p=q=\infty$ and D is totally positive. Therefore one usually considers the case that D is a diagonal matrix. Following is such a result the proof of which can be found in [13]:

Let D = diag $\{a_1, a_2, \dots, a_m\}$ be an mxm real diagonal matrix, assume that $a_1 \ge a_2 \ge \dots \ge a_m > 0$. Given $1 \le q \le p \le \infty$. Let 1/r = 1/q - 1/p. Then

$$d_{n}(D_{p}; 1_{q}^{m}) = (\sum_{k=n+1}^{m} a_{k}^{p})^{1/r}, \text{ where } D_{p} = \{ Dx : || x || p \le 1 \}$$

It can be easily seen that the n-width $d_{\Omega}\left(A;X\right)$ can also be written as

$$d_n(A; X) = Inf inf \{ \varepsilon > 0 : A \subset \varepsilon U_X + X_n \}$$
 X_n

where $\mathbf{U}_{\mathbf{X}}$ is the unit ball of X. This definition allows us the following generalization.

Let A, B be non-empty subsets of a normed linear space X. Assume that B absorbs A then n- width of A with respect to B, d_n (A, B; X), is defined by

$$d_n(A, B; X) = Inf inf \{ \varepsilon > 0 : A \subset \varepsilon B + X_n \}.$$
 X_n

This definition is used in the concept of diametral dimension of nuclear spaces [3, 12].

The basic properties of n-widths can be found in [9,10,12,13]. It is easy to show that if X be a normed linear space and A be a closed subset of X, then

A is compact if and only if d_n (A) \downarrow 0 and A is bounded.

N-Widths of an Operator

Let T: X--->Y be an operator between two normed linear spaces. The n-width of T:

$$d_n(T) = d_n(T(U_X); Y) = Inf \{r > 0 : T(U_X) \subset r U_V + Y_n\}.$$

It is known that

T is compact if and only if
$$d_n$$
 (T) \downarrow 0.

Notation: Let F(X,Y) and K(X,Y) denote the closed subsets of L(X,Y) consist of finite rank and compact operators respectively. F(X,Y) is a subset of K(X,Y) and need not equal K(X,Y). The n-th approximation number $a_n(T)$ of $T \in L(X,Y)$ for $n = 0,1,2,\cdots$ defined as

$$a_n(T) = Inf \{ || T - A || : A \in F_n(X, Y) \}$$

where $F_n(X,Y)$ is the collection of all mappings whose range is at most n-dimensional. It is known that

$$T \in F(X,Y)$$
 if and only if $\lim_{n\to\infty} a_n(T) = 0$

so, $a_n(T)$ provides a measure how well T can be approximated by finite mappings whose range is at most n-dimensional. Algebraic and analytic properties of $a_n(T)$ can be found in [9,12]. The following theorem [5] gives the relationship between the n-widths and the approximation numbers:

Theorem: For any $T \in L(X,Y)$, the following inequality is valid:

$$d_n(T) \le a_n(T) < (\sqrt{n} + 1) d_n(T)$$
.

The best value p(n) for which $a_n(T) < p(n) d_n(T)$ is not known. But p(n) can not be replaced by a constant independent of n. There are spaces for which

$$\lim_{n \to \infty} d_{n}(T) = 0 \quad \text{and} \quad \lim_{n \to \infty} a_{n}(T) \neq 0.$$

It should be noted that if T: H-->H is a compact operator on a Hilbert space H, then one can define $(d_n(T))$ as the sequence of eigenvalues of the positive operator $|T| = (TT^*)^{1/2}$. In this case:

i)
$$a_n(T) = d_n(T)$$

 n
ii) $\prod_{i=1}^{n} |\lambda_i(T)| \le \prod_{i=1}^{n} d_i$ (T) (H.Weyl Inequality, 1949) [14]

where $(\lambda_i(T))$ is an eigenvalue sequence [6]. The last inequality can be viewed as relating the eigenvalues of T to those of |T|.

From (ii) it may be deduced that for all $n \in \mathbb{N}$ and all $p \in (0,\infty)$,

$$\sum_{i=1}^{n} |\lambda_{i}| (T) \stackrel{\mathbf{p}}{\mid} \leq \sum_{i=1}^{n} \stackrel{\mathbf{p}}{a_{i}} (T)$$

which implies that if $(a_i(T)) \in l_p$ then $(\lambda_i(T)) \in l_p$. This result can be used to obtain information about the distribution of eigenvalues of certain non-self-adjoint elliptic problems [see chapter XII of 4]. Although Weyl's inequality was given in Hilbert space setting, a simple proof of it in the context of Banach spaces can be found in [4].

II. Generalized N-Widths

Let X be a Banach space and $(A_n)_n \in \mathbb{N}$ be a sequence of subsets of X satisfying the following conditions:

1) (0) =
$$A_0 \subset A_1 \subset A_2 \subset \cdots \subset X$$

- 2) $\lambda A_n \subset A_n$ for all scalars λ and $n = 1, 2, \cdots$
- 3) $A_n + A_m \subset A_{n+m}$ for $m, n = 1, 2, \cdots$

then (X,A_n) is called an approximation scheme. The use of an approximation scheme on a Banach space and its use in approximation theory can be found in Butzer and Scherer [2] and in Pietsch [11]. For example one can consider $X=l_p$ with p>1 and A_n to be the set of all scalar sequences (a_m) such that $a_m=0$ when m>n or $X=L_p$ [0,1] $2\leq p\leq \infty$ and $A_n=L_{p+1/n}$ [0,1].

Instead of looking at subset of X with the above properties, if we consider $Q=Q_{\Omega}(X)$ a <u>family</u> of subsets of X with the same properties (replace A_{Ω} by Q_{Ω} in above 1,2,3) then , it is possible to define a refined notion of approximation scheme. For example, for a given Banach space X, Q_{Ω} will be the set of all n-dimensional subspaces or for a given Banach space E, consider X = L(E) and Q_{Ω} will be the set of all n-nuclear maps on E.

This refined approximation scheme allows us to define n- width $d_n(A;Q)$ with respect to this approximation scheme as follows:

<u>Definitions:</u> 1) Let U_X be the closed unit ball of X and D be a bounded subset of X. Then the <u>generalized n-th width</u> of D with respect to U_X is defined by:

$$d_n(D;Q) = Inf \{ r > 0 : D \subset r U_X + A A \in Q_n(X) \}.$$

The generalized n-th width $d_n(T;Q)$ of $T\in L(X)$ is defined as $d_n(T(U_X); Q)$. From the stated definition it follows that $(d_n(T;Q))$ is non-increasing sequence of non-negative numbers and

$$||T|| = d_O(T|Q) \ge d_1(T;Q) \ge \cdots \ge d_n(T;Q) \ge \cdots$$

Notice that if one choses Q_n to be the at most n-dimensional subspaces of X, then $d_n\left(T;Q\right)$ coincides with the usual definition of $d_n\left(T\right)$.

2) A bounded set D of X is said to be Q-compact set if lim $d_{\Omega}(D;Q)=0$ and $T\in L(X)$ is said to be Q-compact operator if n lim $d_{\Omega}(T;Q)=0$. That is T(Ux) is a Q-compact set.

We assume that each $A_n \in Q_n (n \in N)$ is separable, then it is immediate from the definitions that Q-compact sets are separable and Q-compact maps have separable range.

Q-Compactness Does Not Imply Compactness

and that $\lambda A_n \subset A_n$.

We show that in Lp[0,1], $2 \le p \le \infty$, with suitably defined approximation scheme, one can find a Q-compact map which is not compact.

Let $[r_n]$ be the space spanned by Radamacher functions and R_p be the closure of $[r_n]$ in L_p [0, 1]. Define an approximation scheme A_n on $L_p[0,1]$ as $A = L_{p+1/n}$. $L_{p+1/n} \subset L_{p+1/n+1}$ gives us $A_n \subset A_{n+1}$ for $n=1, 2, \cdots$ and it is easily seen that $A_n + A_m \subset A_{n+m}$ for $n, m=1,2,\cdots$

Next we observe the existence of a projection

$$P : L_p[0,1] \longrightarrow R_p \quad \text{for } p \ge 2$$
.

In fact $P = j \circ P_2 \circ i$ where i, j are isomorphisms shown in the diagram below and P_2 is the orthogonal projection.

Theorem: For $p \ge 2$ the projection P: $L_p[0, 1] \longrightarrow R_p$ is Q-compact but not compact.

It is easy to show that $P(U_{Lp}) \subset L_{p+1/n}$ thus $d_n(P;Q) = 0$. To see P is not a compact operator observe that dim $R_p = \infty$ and I - P is a projection with kernel R_p , thus I - P is not a Fredholm operator so, P can not be a compact operator. For details of the proof of the above theorem see [1].

<u>Definitions:</u> 1) A sequence $(x_n,k)_k \subset A_n$ is said to be order c_0 -sequence if followings hold:

- i) For every $n \in \mathbb{N}$, there exists an $A_n \in \mathbb{Q}_n$ and $(x_n, k)_k \subset A_n$.
- ii) $\|x_{n,k}\|$ --> 0 as n--> ∞ uniformly in k.

2) Suppose $(x_n,k)_k$ is an order- c_0 -sequence in X. Then the set S_m associated with $(x_n,k)_k$ is:

$$s_{m} = \left\{ \sum_{n=1}^{m} \lambda_{n} x_{n, k(n)} : \sum_{n=1}^{m} |\lambda_{n}| \leq 1 \right\}.$$

where $x_{1,k}(1) \in A_{1}, x_{2,k}(2) \in A_{2}, \dots, x_{m,k}(m) \in A_{m}$.

Clearly $S_m \subset A_1 + A_2 + \cdots + A_m \in Q_m 2$. So if Q_n is n-dimensional, S_n is at most n^2 -dimensional.

For a bounded set D in X, we define the <u>ball measure of non-O-compactness</u> $\alpha(D;Q)$ of D by

Following are the several results about Q- compact sets and Q- compact maps. The proofs of all are presented in [1].

Theorems: 1) Suppose (X, Q_n) is an approximation scheme with sets A_n Q_n assumed to be solid (i.e., $|\lambda|$ A_n A_n for $|\lambda| \le 1$). Then a bounded set D of X is Q- compact if and only if there exists an order co- sequence $(x_n,k)_k$ A_n such that

$$D \subset \left\{ \sum_{n=1}^{\infty} \lambda_{n} x_{n, k(n)} : x_{n, k(n)} \in (x_{n, k}), \sum_{n=1}^{\infty} |\lambda_{n}| \leq 1 \right\}.$$

This theorem can be considered an analogue of the Dieudonne-Schwartz lemma on compact sets in terms of standard Kolmogorov diameter. Again if one choses $Q_{\rm n}$ to be at most n- dimensional subspaces of X, one can show that Q- compactness of a bounded subset D coincides with the usual definition of compactness of D.

- 2) The uniform limit of Q-Compact maps is Q- compact and an ideal of Q- compact maps is equal to its surjective hull.
- 3) Given (X,Q_n) , assume that each $A_n\in Q_n$ is a vector subspaces of X. Then, a bounded set D of X is Q-compact if and

only if $D \subset T(U_E)$ for a suitable Banach space E and a Q- compact map T on E into X.

4) Let X be a Banach space with approximation scheme Q_n and let D be a bounded subset of X; then

$$\alpha (D;Q) = \lim_{n \to \infty} d_n(D;Q)$$

Theorem (4) defines the ball measure of non-Q-compactness as a limit of generalized n-widths.

We finish by posing the following question: Suppose Orlicz function space $_{L}\Psi$ is given (for definitions see [7]). If $_{L}\Psi$ is considered with the norm $\| \ \|_{\Psi}$. It is well known that $(_{L}\Psi, \ \| \ \|_{\Psi})$ is a Banach space [8]. Therefore n-widths $d_{n}(A)$ of a norm, bounded set A can be defined as usual. On the other hand it is more natural to consider $_{L}\Psi$ with its Orlicz modular ρ where

$$\rho(f) = \int \psi(f(x)) dx$$

after all $\|f\|_{\Psi} = \inf \{ \lambda > 0 : \rho(f/\lambda) \le 1 \}$, defined in terms of this modular. Can one define an n-width of a modular bounded set A, say $d_n(A,\rho)$, such that $d_n(A,\rho) = d_n(A)$ and can this $d_n(A,\rho)$ be related with measures of non-compactness?

References

- Aksoy, A. G. (1991) "Q-compact maps and Q-compact sets," Math. Japon. 36 No.1, 1-7.
- Butzer, P. L., and Scherer, K. (1968)
 Approximationsprozesse und Interpolationsmethoden,
 Mannheim/ Zurich.
- Dubinsky, E. (1979) The Structure of Nuclear Frechet Spaces Springer-Verlag, Lecture Notes in Math. No.720.

- 4. Edmunds D. E., and Evans W. D. (1987) Spectral Theory and Differential Operators Oxford Science Publications.
- Hutton, C. V., Morrell, J. S., and Retherford, J. R. (1976)
 "Diagonal operators, Approximation numbers, and Kolmogorov diameter," *Journal of Approximation Theory*, 16, 48-80.
- 6. Konig, H. (1986) Eigenvalue Distribution of Compact Operators, Birkhäuser Verlag, OT 16, Basel.
- 7. Krasnosel'skii, M. A., Rutickii, Ya. B. (1961) Convex functions Orlicz spaces, P. Noordhoff Ltd/ Groningen.
- 8. Musielak, J. (1983) Orlicz spaces and modular spaces, Springer-Verlag, Lect. Notes in Math., No: 1034.
- Pietsch, A. (1980) Operator Ideals , North Holland, Amsterdam.
- 10. _____ (1987) Eigenvalues and s- numbers , Cambridge University Press.
- 11. (1981) "Approximation spaces," Journal of Approximation Theory, 32, 115-134.
- 12. (1972) Nuclear Locally Convex Spaces, Springer-Verlag, New York.
- 13. Pinkus, A. (1985) N-widths in Approximation theory, Springer-Verlag, A Series of Modern Surveys in Mathematics.
- 14. Weyl, H. (1949) "Inequalities between the two kinds eigenvalues of a linear transformation." Proc. Nat. Acad. Sci. USA 35, 408-411.