[} S—_— T ]

A GENERALIZATION OF N-WIDTHS

ASUMAN G. AKSOY
Department of Mathematics
Claremont McKenna College
Claremont, CaA. 91711
U.S.A,

Abstract

This paper is a study of the n-widths defined by
Kolmogorov. 1In section I we give definitions of n-widths of a
set in a Banach space and n-widths of an operator acting
between Banach spaces. Several important well known results
about this concepts are also included in section I. In section
II1, we introduce a refined concept of an approximation scheme
with respect to which a refined concept of n-widths can be
defined. Theorems about generalized n-widths illustrate the
fact that this is a genuine generalization. We finish by the
question of finding concept of n-widths in the context of
Orlicz modular spaces.

I. N-Widths of a Set

Let X be a normed linear space and Xp be its n-dimensional

subspace of X, for each xeX the distance, d(x;Xp) of Xp to x is
defined by:

d(x;Xn) = Inf (Il x -y Il : yexp }.

If there is a y*eXp for which d{(x;Xn) = llx - y*ll holds then
y* is the best approximation to x from Xp. More than 100 years
ago Weierstrass proved that given a continuous function f(x)
on [a,b] and € > 0, there exists a polynomial p(x) such that
l£(x) - p(x)I< €. Which tells us that d(f; Pp)--> 0
as n-->o0 for each n, where Pp = span(l, x1,--., xD).

Now let us suppose instead of a single element x, we are
given a subset A of X, then how well n-dimensional subspace Xp
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of X approximate the subset A? To answer this question one
looks at the deviation of A from Xp, namely:

d(A; Xp) = Sup { d(a,Xp) : a€ A }

Thus, d(A; Xp) measures the extent to which the "worst element®
of A can be approximated from Xp. If we take this process one
step further by allowing n-dimensional subspaces Xp vary within
X, then the question is how well one can approximate A by n-
dimensional subspaces of X? The answer to this question was
first given by Kolmogorov.

Definition: Let X be a normed linear space and A a subset of
X, the pn-th width or pn-diameter (or Kolmogorov n-th diameter)
of A in X is:

dn(A;X)=Inf{ d(A;Xn): Xn is n-dimensional subspace of X}

Thus dn(A;X)=Inf sup inf ll a-x Il .
Xn a€aA xX€Xn

We often drop X and write dp (A).
A subspace Xp of X of dimension at most n,for which dp(A;X) =
d(A;Xn) is called the optimal subspace for dpn(A:X).

Besides defining the concept of n-widths, Kolmogorov also
computed dn(A;X) for some particular cases. For example,
he showed that [13]

do(A ; L2) = o0, and
d2n-1 (A ; L2) =d2n (A ; L2) =n~k

where L2 = L2 [0;2%] square integrable functions on [0;2%]), and
(k)
A= { £ : fewyr HEXRIN<g1)

(k)
and W2 is the space of 2% periodic, real valued, (k-1) times
differentiable functions whose (k-1) st derivative is
absolutely continuous and whose kth derivative is in L2.

In general it is impossible to obtain dpn(A ; X) for all A
and X although there is a considerable effort devoted to
calculate dp(A;X) for specific choices of A and X [ See 13]. A
usual method of calculation is to find an upper bound by
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calculating dp(A;Xpn) for a "reasonable" choice of Xp, and then
to show that the quantity obtained is infact the lower bound as
well. It is also important to determine asymptotic behavior of
dn (A;X) as n--> o0, In many cases very simple n-dimensional

subspaces may approximate A in an asymptotically optimal
manner.

N-widths of integral operators and n- widths of Soboloev
spaces can be found in [13]. Let D be a fixed nxn matrix and
the set A is

n
A=(Dx:llx||l';351}clq where p, q € [1,00]

Very little are known about dn(A;f;) unless p=gq=2 or p=q=%
and D is totally positive. Therefore one usually considers the

case that D is a diagonal matrix. Following is such a result
the proof of which can be found in ([13]

Let D = diag (air a2s +«-+ ¢ ap} be an mxm real diagonal
matrix,assume that aj > a2 2 - 2 ag > 0. Given 1 £ g £ p Soo,
Let 1/r = 1/q - 1/p. Then

™ m . 1/r
dn(Dp; 1g) = (X ax ) , whereDp = {Dx : l x I p <1 )
k=n+1

It can be easily seen that the n-width dp(A;X) can also be
written as

dn(A ; X) = Inf inf { €E>0 : A €E& Ux + Xp}
Xn

where Ux is the unit ball of X. This definition allows us the
following generalization.

Let A, B be non-empty subsets of a normed linear space X.
Assume that B absorbs A then n- width of A with respect to B,
dn (A, B; X), is defined by

dn(A, B; X) = Inf inf { € >0 : A & €B + Xp}.
Xn

This definition is used in the concept of diametral dimension
of nuclear spaces ({3, 12].

The Dbasic properties of n-widths can be found in
(9,10,12,13)}. It is easy to show that if X be a normed linear
space and A be a closed subset of X, then
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A is compact if and only if dn (A) } O and A is
bounded.

N-Widths of an Operator

Let T : X--->Y be an operator between two normed linear
spaces. The n-width of T:

dn(T) = dn( T(Ux); ¥) = Inf { r >0 : T(Ux) € r Uy + Yn}.
It is known that
T is compact if and only if dn (T} § O .

Notation: Let F(X,Y) and K(X,Y) denote the closed subsets of
L(X,Y) consist of finite rank and compact operators
respectively. F(X,Y) is a subset of K(X,Y) and need not equal

K(X,Y) .The n-th approximation number an(T) of T € L(X,Y) for n
=0,1,2,-- defined as

an(T) =Inf (lT-2all : A e Fp(X,Y) }

where Fp(X,Y) is the collection of all mappings whose range is
at most n- dimensional. It is known that

T e F(X,Y) 1if and only if lim apn(T) = 0
n--=>o0

so, ap(T) provides a measure how well T can be approximated by
finite mappings whose range is at most n-dimensional. Algebraic
and analytic properties of ap(T) can be found in [9,12]. The
following theorem ([5] gives the relationship between the n-
widths and the approximation numbers:

Theorem: For any T € L(X,Y), the following inequality is
valid:

dn(T) € an(T) < (Vo + 1) dn(T).

The best value p(n) for which apn(T) < p{(n) dn(T) is not
known. But p(n) can not be replaced by a constant independent
of n. There are spaces for which
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lim dp(T) =0 and 1lim ap(T) # O.
n n

It should be noted that if T: H-->H 1is a compact operator on
a Hilbert space H, then one can define (dp(T)) as the sequence

of eigenvalues of the positive operator |T| = (TT*)1/2, In this
case:

i) ap(T) = dn(7T)
n n

11) JTtAs(m 1 < J] di (T) (H.Weyl Inequality, 1949) [(14)
i=1 i=1

where (Ai(T)) is an eigenvalue sequence [6]. The 1last

inequality can be viewed as relating the eigenvalues of T to
those of |[TI

From (ii) it may be deduced that for all n €é N and all p
€ (0,90),

n ? n ?
Yiri (T)I € 2 ai(T)
i=1 i=1

which implies that if (ai(T)) € lp then (Ai(T)) € lp. This
result can be used to obtain information about the distribution
of eigenvalues of certain non-self-adjoint elliptic problems
[(see chapter XII of 4]. Although Weyl's inequality was given in
Hilbert space setting, a simple proof of it in the context of
Banach spaces can be found in [4].

II. Generalized N-Widths

Let X be a Banach space and {(Apn)n e N be a sequence of
subsets of X satisfying the following conditions:

1) (0) =20 &£ A1 CA2C '+ &X

2) AAnp € An for all scalars A and n = 1,2, -

3) Ah + Ay <. Apn+m for m,n =1,2,:--
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then (X,Apn) is called an approximation scheme. The use of an
approximation scheme on a Banach space and its wuse in
approximation theory can be found in Butzer and Scherer [2]
and in Pietsch [l11].For example one can consider X = lp with
P > 1 and Apn to be the set of all scalar sequences (ap) such

that am = 0 when m > n or X =1Lp [(0,1] 2 S p £ o0 and
Apn = L p+1/n [0,1].

Instead of 1looking at subset of X with the above
properties, if we consider Q = Qp(X) a family of subsets of X
with the same properties (replace Ap by Qn in above 1,2,3) then .
it is possible to define a refined notion of approximation
scheme. For example, for a given Banach space X, On will be the
set of all n-dimensional subspaces or for a given Banach space
E, consider X = L(E) and Qpn will be the set of all n-nuclear
maps on E,.

This refined approximation scheme allows us to
define n- width dn(A ; Q) with respect to this approximation
scheme as follows:

Definitions: 1) Let Ux be the closed unit ball of X and D be

a bounded subset of X. Then the generalized n-th width of D
with respect to Ux is defined by:

dn(D;Q) =Inf { r >0 : DCr Ux + A A € Qn(X) }.

The generalized n-th width dp(T;Q) of T € L(X) is defined as
dn(T(Ux); Q). From the stated definition it follows that
(dn (T;Q)) is non- increasing sequence of non- negative numbers
and

It I = do(T Q) 2 d1(T;Q) 2 +-+2 dp(T;Q) 2

Notice that if one choses Qpn to be the at most n- dimensional
subspaces of X, then dpn(T;Q) coincides with the usual
definition of dp(T).

2) A bounded set D of X is said to be Q- compact set if
lim dpn(D;Q) = 0 and TeL(X) is said to be Q-compact operator if
n

lim dn(T;Q) = 0. That is T(Ux) is a Q- compact set.
n
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We assume that each Ap € Qp(neN) is separable, then it is

immediate from the definitions that Q-compact sets are
separable and Q-compact maps have separable range.

Q-Compactness Does Not Imply Compactness

We show that in Lp(0,1], 2 £ p € 0, with suitably defined
approximation scheme, one can find a Q-compact map which is not
compact.

Let [rn) be the space spanned by Radamacher functions
and Rp be the closure of (rn) in Lp {0, 1)]. Define an
approximation scheme A on Lp[O,ll as A = Lp+l/n-

Lp+1/n & Lp+l/n+l1 gives us An CAn+l for n=1, 2, *--
and it is easily seen that Apn + Am cApn+m for n, m=1,2, .-
and that AAp ¢ Ap.

Next we  observe the existence of a projection

P Lp[O,l] ————— > Rp forpz 2 .

In fact P = joP2e i where i, j are isomorphisms shown in
the diagram below and P2 is the orthogonal projection.

i P2 )
Lp > L2 —==> R2======- >Rp .

Theorem: For p 2 2 the projection P: Lp[O, 1] ====> Rp is Q-
compact but not compact.

It is easy to show that P (ULp) & Lp+1/n thus dp(P;Q)---> 0.
To see P is not a compact operator observe that dim Rp = ¢ and
I -P is a projection with kernel Rp, thus I - P is not a

Fredholm operator so, P can not be a compact operator. For
details of the proof of the above theorem see {[1].

Definitions: 1) A sequence (xp,k)k C An is said to be order
co-sequence if followings hold:

1) For every neN, there exists an ApeQn and (xn,k)kx € An.
ii) Uxpa,x Il ==> 0 as n-=> o uniformly in k.
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2) Suppose (xpn,k)k is an order- co-sequence in
X. Then the set Sm associated with (xp,k)k is:

m m
Sm = {zxnxn,k(n) : 2 Anl S 1 }.
n=1 n=1
where x1,k(1) € Al, X2,k(2) €A2, *** , Xm,k(m) € BAm .
Clearly SmcAl + A2 + *++ + BAn € Qn2.So if Qpn is n-dimensional,

Sn is at most n2-dimensional.

For a bounded set D in X, we define the ball measure of
non-O-compactness O(D;Q) of D by

(D, Q) = inf{r > 0 : order-cg-sequence (xn,k)k and associated

Sn such that p €lJ B(x, r) for some n}.
XESn

Following are the several results about Q- compact sets
and Q- compact maps. The proofs of all are presented in [1].

Theorems: 1) Suppose (X, Qpn) is an approximation scheme with

sets An Qpn assumed to be solid (i.e., |Al An Ap for |A|

£ 1 ). Then a bounded set D of X is Q- compact if and only if
there exists an order co- sequence (xn,k)k An such that

00 o0
DC{Z Anxn,k (n) ! Xn,k(n) € (Xn,k). lenl <1},
n=1 n=1

This theorem can be considered an analogue of the Dieudonne-
Schwartz lemma on compact sets in terms of standard Kolmogorov
diameter. Again if one choses Qn to be at most n- dimensional
subspaces of X, one can show that Q- compactness of a bounded
subset D coincides with the usual definition of compactness of
D.

2) The uniform limit of Q-Compact maps is Q- compact
and an ideal of Q- compact maps is equal to its surjective
hull.

3) Given (X,0Qn), assume that each ApneQn is a vector
subspaces of X. Then, a bounded set D of X is Q-compact if and
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only if DCT(UE) for a suitable Banach space E and a Q- compact
map T on E into X.

4) Let X be a Banach space with approximation scheme
QOn and let D be a bounded subset of X; then

o (D;Q) = lim dn(D;Q)
n-->o0

Theorem (4) defines the ball measure of non-Q-compactness as a
limit of generalized n-widths.

We finish by posing the following question: Suppose Orlicz
function space ¥ is given (for definitions see (7] ). If V¥
is considered with the norm Il Iy . It is well known that
RAZER Ihv) is a Banach space [(8). Therefore n-widths dp(A) of
a norm, bounded set A can be defined as usual. On the other
hand it is more natural to consider LY with its Orlicz
modular p where

p(e) = [W(fx)) ax
X

after all |l £ lhy = Inf { A >0 : p(f/A) £ 1 }, defined in
terms of this modular. Can one define an n-width of a modular
bounded set A, say dp(A,p), such that dn(A,p) = dn(A) and can
this dn(A,p) be related with measures of non-compactness?
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